Contents

Our Goal i
Chapter 1. Like Programming, Mathematics has a Culture 1
Chapter 2. Polynomials 5
2.1 Polynomials, Java, and Definitions 5
2.2 A Little More Notation 13
2.3 Existence \& Uniqueness 14
2.4 Realizing it in Code 22
2.5 Application: Sharing Secrets 24
2.6 Cultural Review 27
2.7 Exercises 27
2.8 Chapter Notes 31
Chapter 3. On Pace and Patience 35
Chapter 4. Sets 39
4.1 Sets, Functions, and Their -Jections 40
4.2 Clever Bijections and Counting 48
4.3 Proof by Induction and Contradiction 51
4.4 Application: Stable Marriages 54
4.5 Cultural Review 58
4.6 Exercises 59
4.7 Chapter Notes 61
Chapter 5. Variable Names, Overloading, and Your Brain 63
Chapter 6. Graphs 69
6.1 The Definition of a Graph 69
6.2 Graph Coloring 71
6.3 Register Allocation and Hardness 73
6.4 Planarity and the Euler Characteristic 75
6.5 Application: the Five Color Theorem 78
6.6 Approximate Coloring 83
6.7 Cultural Review 85
6.8 Exercises 85
6.9 Chapter Notes 87
Chapter 7. The Many Subcultures of Mathematics 89
Chapter 8. Calculus with One Variable 95
8.1 Lines and Curves 96
8.2 Limits 100
8.3 The Derivative 107
8.4 Taylor Series 111
8.5 Remainders 117
8.6 Application: Finding Roots 119
8.7 Cultural Review 125
8.8 Exercises 125
Chapter 9. On Types and Tail Calls 129
Chapter 10. Linear Algebra 135
10.1 Linear Maps and Vector Spaces 136
10.2 Linear Maps, Formally This Time 141
10.3 The Basis and Linear Combinations 143
10.4 Dimension 147
10.5 Matrices 149
10.6 Conjugations and Computations 155
10.7 One Vector Space to Rule Them All 158
10.8 Geometry of Vector Spaces 159
10.9 Application: Singular Value Decomposition 164
10.10 Cultural Review 179
10.11 Exercises 179
10.12 Chapter Notes 182
Chapter 11. Live and Learn Linear Algebra (Again) 185
Chapter 12. Eigenvectors and Eigenvalues 191
12.1 Eigenvalues of Graphs 193
12.2 Limiting the Scope: Symmetric Matrices 195
12.3 Inner Products 198
12.4 Orthonormal Bases 202
12.5 Computing Eigenvalues 205
12.6 The Spectral Theorem 207
12.7 Application: Waves 209
12.8 Cultural Review 225
12.9 Exercises 226
12.10 Chapter Notes 229
Chapter 13. Rigor and Formality 233
Chapter 14. Multivariable Calculus and Optimization 239
14.1 Generalizing the Derivative 239
14.2 Linear Approximations 241
14.3 Vector-valued Functions and the Chain Rule 246
14.4 Computing the Total Derivative 248
14.5 The Geometry of the Gradient 251
14.6 Optimizing Multivariable Functions 253
14.7 Gradient Descent: an Optimization Hammer 261
14.8 Gradients of Computation Graphs 262
14.9 Application: Automatic Differentiation and a Simple Neural Network 265
14.10 Cultural Review 281
14.11 Exercises 281
14.12 Chapter Notes 284
Chapter 15. The Argument for Big-O Notation 291
Chapter 16. Groups 301
16.1 The Geometric Perspective 303
16.2 The Interface Perspective 307
16.3 Homomorphisms: Structure Preserving Functions 309
16.4 Building Blocks of Groups 312
16.5 Geometry as the Study of Groups 314
16.6 The Symmetry Group of the Poincaré Disk 324
16.7 Application: Drawing Hyperbolic Tessellations 329
16.8 Cultural Review 345
16.9 Exercises 345
16.10 Chapter Notes 350
Chapter 17. A New Interface 353
Appendix A. Notation 363
Appendix B. A Summary of Proofs 365
B. 1 Propositional and first-order logic 365
B. 2 Methods of proof 367
B. 3 How does one actually prove things? 368
Appendix C. Annotated Resources 373
C. 1 Fundamentals and Foundations 373
C. 2 Polynomials 374
C. 3 Graph Theory and Combinatorics 375
C. 4 Calculus and Analysis 375
C. 5 Linear Algebra 376
C. 6 Optimization 377
C. 7 Abstract Algebra (Groups, etc.) 377
C. 8 Topology 378
C. 9 Computer Science, Theory, and Algorithms 378
C. 10 Fun and Recreation 380
About the Author and Cover 381
Index 383

